Falkner-Skan Flow of a Maxwell Fluid with Heat Transfer and Magnetic Field
نویسندگان
چکیده
منابع مشابه
Falkner–Skan Boundary Layer Flow of a Sisko Fluid
In this paper, we investigate the steady boundary layer flow of a non-Newtonian fluid, represented by a Sisko fluid, over a wedge in a moving fluid. The equations of motion are derived for boundary layer flow of an incompressible Sisko fluid using appropriate similarity variables. The governing equations are reduced to a single third-order highly nonlinear ordinary differential equation in the ...
متن کاملUnsteady Falkner-skan Flow of a Second Grade Fluid
The non-similar solutions for the unsteady flow of a second grade fluid wereconstructed. The method of perturbation was used for the solution of the governing non-linear equation. The results of Rajagopal et al. (Int. J. Non-Linear Mechanics, 1983) can be obtained as a special case of the presented analysis.
متن کاملFluid Flow and Heat Transfer of Nanofluids over a Flat Plate with Conjugate Heat Transfer
The falling and settling of solid particles in gases and liquids is a natural phenomenon happens in many industrial processes. This phenomenon has altered pure forced convection to a combination of heat conduction and heat convection in a flow over a plate. In this paper, the coupling of conduction (inside the plate) and forced convection of a non-homogeneous nanofluid flow (over a flat plate) ...
متن کاملImpact of Magnetic Field on Convective Flow of a Micropolar Fluid with two Parallel Heat Source
A numerical study is performed to analysis the buoyancy convection induced by the parallel heated baffles in an inclined square cavity. The two side walls of the cavity are maintained at a constant temperature. A uniformly thin heated plate is placed at the centre of the cavity. The horizontal top and bottom walls are adiabatic. Numerical solutions of governing equations are obtained using the ...
متن کاملFalkner–Skan Flow over a Wedge with Slip Boundary Conditions
b = velocity coefficient cp = specific heat f = nondimensional stream function K = nonequilibrium parameter Kn = Knudsen number k = thermal conductivity l = slip length M = Mach number m = flow exponent n = distance in the normal direction P = pressure Pr = Prandtl number Re = Reynolds number T = temperature U = external x velocity u = x velocity v = y velocity x = position in the flow directio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Engineering Mathematics
سال: 2013
ISSN: 2314-6109
DOI: 10.1155/2013/692827